Two new methods to fit models for network meta-analysis with random inconsistency effects
نویسندگان
چکیده
BACKGROUND Meta-analysis is a valuable tool for combining evidence from multiple studies. Network meta-analysis is becoming more widely used as a means to compare multiple treatments in the same analysis. However, a network meta-analysis may exhibit inconsistency, whereby the treatment effect estimates do not agree across all trial designs, even after taking between-study heterogeneity into account. We propose two new estimation methods for network meta-analysis models with random inconsistency effects. METHODS The model we consider is an extension of the conventional random-effects model for meta-analysis to the network meta-analysis setting and allows for potential inconsistency using random inconsistency effects. Our first new estimation method uses a Bayesian framework with empirically-based prior distributions for both the heterogeneity and the inconsistency variances. We fit the model using importance sampling and thereby avoid some of the difficulties that might be associated with using Markov Chain Monte Carlo (MCMC). However, we confirm the accuracy of our importance sampling method by comparing the results to those obtained using MCMC as the gold standard. The second new estimation method we describe uses a likelihood-based approach, implemented in the metafor package, which can be used to obtain (restricted) maximum-likelihood estimates of the model parameters and profile likelihood confidence intervals of the variance components. RESULTS We illustrate the application of the methods using two contrasting examples. The first uses all-cause mortality as an outcome, and shows little evidence of between-study heterogeneity or inconsistency. The second uses "ear discharge" as an outcome, and exhibits substantial between-study heterogeneity and inconsistency. Both new estimation methods give results similar to those obtained using MCMC. CONCLUSIONS The extent of heterogeneity and inconsistency should be assessed and reported in any network meta-analysis. Our two new methods can be used to fit models for network meta-analysis with random inconsistency effects. They are easily implemented using the accompanying R code in the Additional file 1. Using these estimation methods, the extent of inconsistency can be assessed and reported.
منابع مشابه
Paule-Mandel estimators for network meta-analysis with random inconsistency effects
Network meta-analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta-analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between-study heterogeneity. Models for network meta-analysis with random inconsistency effects have the dual aim of allowing...
متن کاملA matrix-based method of moments for fitting multivariate network meta-analysis models with multiple outcomes and random inconsistency effects.
Random-effects meta-analyses are very commonly used in medical statistics. Recent methodological developments include multivariate (multiple outcomes) and network (multiple treatments) meta-analysis. Here, we provide a new model and corresponding estimation procedure for multivariate network meta-analysis, so that multiple outcomes and treatments can be included in a single analysis. Our new mu...
متن کاملConsistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression‡
Network meta-analysis (multiple treatments meta-analysis, mixed treatment comparisons) attempts to make the best use of a set of studies comparing more than two treatments. However, it is important to assess whether a body of evidence is consistent or inconsistent. Previous work on models for network meta-analysis that allow for heterogeneity between studies has either been restricted to two-ar...
متن کاملExtending DerSimonian and Laird's methodology to perform network meta‐analyses with random inconsistency effects
Network meta-analysis is becoming more popular as a way to compare multiple treatments simultaneously. Here, we develop a new estimation method for fitting models for network meta-analysis with random inconsistency effects. This method is an extension of the procedure originally proposed by DerSimonian and Laird. Our methodology allows for inconsistency within the network. The proposed procedur...
متن کاملHierarchical Bayesian approaches for detecting inconsistency in network meta-analysis.
Network meta-analysis (NMA), also known as multiple treatment comparisons, is commonly used to incorporate direct and indirect evidence comparing treatments. With recent advances in methods and software, Bayesian approaches to NMA have become quite popular and allow models of previously unanticipated complexity. However, when direct and indirect evidence differ in an NMA, the model is said to s...
متن کامل